

Progressive Carbon taxation as an EU tax – Socio-Economic Impacts

Mark Sommer, Kurt Kratena

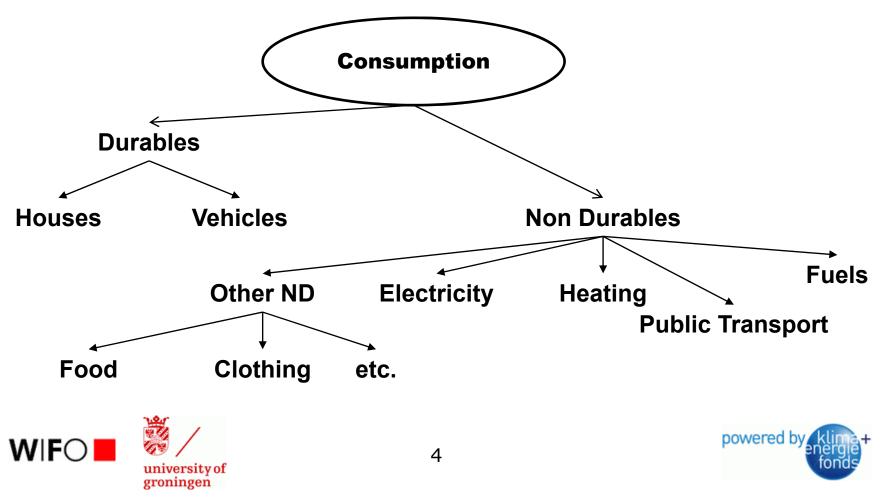
17th GCET, Groningen, 22nd September 2016

Motivation

- Taxation of CO₂ emissions should be
 - Non-distorting (rising inequality)
 - Sustainable (global change)
- Large part of literature shows "regressive impact" of environmental taxation
- We design a "progressive" CO₂ tax
 - On household consumption at national level
 - Rates according to implicit CO₂ prices, i.e. based on CO₂e intensity

- CATs: Modelling of carbon tax scenarios with focus on Austria (work in progress)
- We here show results for
 - EU27 as one economy
 - Taxation of CO₂e footprint in consumption
 - Taxation rates in accordance to implicit CO₂e content of commodities
 - Threshold CO₂e footprint is excepted from tax

Methodology


- Macroeconomic model
 - Hybrid (Input-Output, CGE)
 - Production (62 industries)
 - Consumption (Private, Public, Exports, Investment)
 - Private Households
 - 5 income groups
 - Behaviour integrated via econometric model
 - Link to physical energy/emission flows

• DYNK (Dynamic New Keynesian)

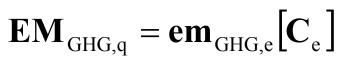
 Price and expenditure elasticity* of energy and non-energy demand of EU households

Nondurable	own price	expenditure	elasticity
Consumption	elasticity	Time series	Cross section
Food	-0.14	0.85	0.61
Clothing	-0.64	1.04	1.28
Furniture/equipment	-1.06	1.11	1.46
Health	-0.83	0.98	1.20
Communication	-0.89	0.96	0.68
Recreation/accomodation	-0.50	1.08	1.27
Financial Services	-0.94	1.33	1.00
Other	-0.68	1.09	1.00
Energy	own price	durable stock	
Consumption	elasticity	elasticity	
Transport fuel	-0.77	1.00	
Heating	-0.87	1.00	
Electricity	-0.81	1.00	

 Sensitivity of consumption to (lagged) income growth (marginal propensity of consumption*, 2007-2050)

Sensitivity, low θ									
	1 st quintile		2 nd quintile		3 rd quintile		4 th quintile		5 th quintile
$dlog(C_{dur})$	0.45	***	0.38	***	0.30	**	0.21		0.14
	(0.15)		(0.16)		(0.16)		(0.16)		(0.16)
$dlog(C_{nondur})$	0.94	***	0.76	***	0.58	***	0.38	***	-0.03
	(0.41)		(0.20)		(0.15)		(0.12)		(0.13)
Sensitivity, high 6)								
	1 st quintile		2 nd quintile		3 rd quintile		4 th quintile		5 th quintile
$dlog(C_{dur})$	0.44	***	0.40	**	0.33	***	0.26	**	0.20
	(0.13)		(0.14)		(0.14)		(0.14)		(0.14)
$dlog(C_{nondur})$	1.02	***	0.86	***	0.69	***	0.49	***	0.09
	(0.37)		(0.18)		(0.14)		(0.12)		(0.09)
WIFO Klime+									

Direct household emissions


• Total consumption by quintile (q) & category

 $\mathbf{C}_{C} = \begin{bmatrix} c_{hous,1} & \cdot & \cdot & \cdot & c_{hous,5} \\ c_{veh,1} & \cdot & \cdot & \cdot & c_{veh,5} \\ c_{fuel,1} & \cdot & \cdot & \cdot & c_{fuel,5} \\ c_{heat,1} & \cdot & \cdot & \cdot & c_{heat,5} \\ c_{el,1} & \cdot & \cdot & \cdot & c_{el,5} \\ \cdots & \cdots & \cdots & \cdots \\ c_{j,1} & \cdot & \cdot & \cdot & c_{j,5} \\ \cdots & \cdots & \cdots & \cdots \\ \end{bmatrix}$

• Energy consumption: monetary \rightarrow physical units $C_{e} = \begin{bmatrix} c_{e_{1,1}} & \cdots & \cdots & c_{e_{1,5}} \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ c_{e_{26,1}} & \cdots & \cdots & c_{e_{26,5}} \end{bmatrix}$

• Direct GHG emissions:

 The total CO₂e footprint of a quintile is the sum of direct (energy related), indirect domestic (production) and indirect imported CO₂e footprint:

$$\frac{d\mathbf{E}\mathbf{M}_{GHG}}{d\mathbf{c}_{q}} = \mathbf{E}\mathbf{M}_{GHG,q} + \frac{d\sum_{j} \mathbf{E}\mathbf{M}_{GHG,j}}{d\mathbf{c}_{q}} + \frac{d\mathbf{E}\mathbf{M}_{GHG}^{m}}{d\mathbf{c}_{q}}$$

 Calculation of the CO₂e footprint of quintile q = adding the consumption vector of quintile q exogenously

Macroeconomic impact and CO₂e footprint of consumption by quintile (in %)

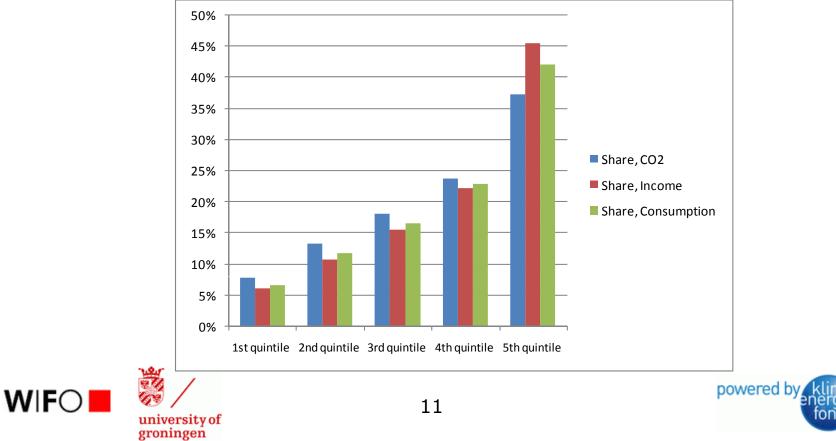
	1st quintile	2nd quintile	3rd quintile	4th quintile	5th quintile
GDP, const. prices	2.7	3.6	4.0	4.2	4.5
Private Consumption, const. prices	0.6	0.6	0.5	0.2	-0.2
Capital formation, const. prices	0.0	0.0	0.1	0.1	0.1
Exports, const. prices	-4.6	-7.7	-10.4	-13.7	-21.1
Employment (persons)	4.9	7.2	8.7	10.3	13.7
Unemployment rate (% points)	-4.2	-6.3	-7.7	-9.0	-10.5
GHG emissions, direct	5.4	11.5	17.7	24.8	40.5
GHG emissions, indirect	18.6	31.1	41.3	53.6	83.6
GHG emissions, total	15.3	26.2	35.4	46.5	72.9

- The direct induced CO₂e footprint by quintiles sums up to 100%
- The indirect induced CO2e footprint contains imported footprint and sums to 228%, i.e. The imported CO2e is 2.3 times bigger.

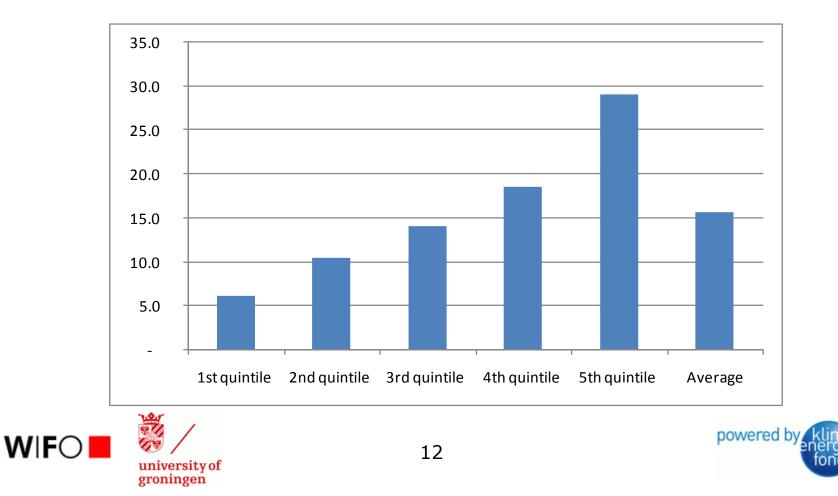
• Cross quintile income impact of consumption by quintile (in %)

	1st quintile	2nd quintile	3rd quintile	4th quintile	5th quintile
Total	5.2	8.1	10.4	12.9	19.6
1st quintile		5.7	7.5	9.7	15.4
2nd quintile	4.6		9.3	11.7	18.2
3rd quintile	4.9	7.7		12.3	19.1
4th quintile	5.2	8.1	10.3		19.8
5th quintile	5.7	8.8	11.2	13.9	

- Consumption of high income groups generates income in low income groups, used for consumption
- Consumption of low income groups generates income in high income groups, used for savings



Calculating the CO₂ footprint


 Income, consumption and CO2-e footprint by quintile (shares in %)

Calculating the CO₂ footprint

• Absolute CO₂e footprint by quintile (in t/capita)

- The Chancel and Piketty (2015) proposal
 - Taxing the CO₂ footprint progressively, i.e. proportionally to its difference from a tax-free threshold (four different versions)
- This paper: the world average footprint (6.2 t CO2e/capita)
- Total tax revenue finances 100% of EU budget (150 bill €)
 - 30 \in /t CO₂ and taxing quintile 2 to 5
- The tax burden on high incomes:


39 bill € (quintile 4) and 73 bill € (quintile 5)

• Tax burden and income groups

• Macroeconomic impact (%) of the implementation of a tax based on the threshold of the average CO_2e footprint

	2015	2020
GDP, const. prices	0.74	-0.76
Private Consumption, const. prices	-0.55	-1.17
Public Consumption, const. prices	6.81	4.52
Capital formation, const. prices	0.88	-0.69
Storage, const. prices	-0.67	-1.31
Exports, const. prices	-0.67	-1.32
Imports, const. prices	1.81	3.05
Employment (persons)	1.43	0.26
Unemployment rate (% points)	-1.26	-0.23

• Impact (%) on households of World threshold

	2015	2020
Durable consumption, const. prices	-0.58	-1.15
Nondurable consumption, const. prices	-0.53	-1.12
Energy, const. prices	0.02	0.13
Real disposable income, const. Prices		
Total	-0.96	-1.71
1st quintile	0.58	0.28
2nd quintile	-0.52	-1.08
3rd quintile	-0.90	-1.54
4th quintile	-1.05	-1.77
5th quintile	-1.27	-2.16

Conclusions

- Employment double dividend due to substitution of EU member countries contribution to EU budget (higher public expenditure)
- Feedback from labour market: wage increase and loss in price competitiveness of EU
- Outlook for the CATs project
 - Modelling the impact of an energy/CO₂ tax on household durables (cars, appliances)
 - Modelling of CO₂ tax scenarios for Austria based on best practice examples from other EU Member States
 - Modelling tax scenarios with lump sum refunding vs. progressive energy/ CO_2 tax on households

